CHAPTER 4

Linked Lists

4.1 SINGLY LINKED LISTS AND CHAINS

In the previous chapters, we studied the representation of simple data structures using an
array and a sequential mapping. These representations had the properiy that successive
nodes of the data object were stored a fixed distance apart. Thus, (1) if the element a;; of
a table was stored at location L, then g; ;,, was at the location L; + 1, (2) if the ith ele-
ment in a queue was at location L;, then the (i + 1)th element was at location (L; + 1) %
n for the circular representation; (3) if the topmost node of a stack was at location Ly,
then the node beneath it was at location Ly — 1, and so on. These sequential storage
schemes proved adequate for the tasks we wished to perform (accessing an arbitrary
node in a table, insertion or deletion of stack and queue elements). However, when a
sequential mapping is used for ordered lists, operations such as insertion and deletion of
arbitrary elements become expensive, For example, consider the following list of three-
letter English words ending in AT:

(BAT, CAT, EAT, FAT, HAT, JAT, LAT, MAT, QAT, PAT, RAT, SAT, VAT, WAT)

To make this list more complete we naturally want to add the word GAT, which means



gun or revolver. If we are using an array and a sequential mapping to keep this list, then
the insertion of GAT will require us to move elements already in the list either one loca-
tion higher or lower. We must move either HAT, JAT, LAT, ---, WAT or BAT, CAT,
EAT, and FAT. If we have to do many such insertions into the middle, neither alternative
is attractive because of the amount of data movement. Excessive data movement also is
required for deletions. Suppose we decide to remove the word LAT, which refers to the
Latvian monetary unit. Then again, we have to move many clements so as to maintain
the sequential representation of the list.

An elegant solution to this problem of data movement in sequential representa-
tions is achieved by using linked representations. Unlike a sequential representation, in
which successive items of a list are located a fixed distance apart, in a linked representa-
tion these items may be placed anywhere in memory. In other words, in a sequential
representation the order of elements is the same as in the ordered list, whereas in a linked
represenfation these two sequences need not be the same. To access list elements in the
correct order, with each element we store the address or location of the next element in
that list. Thus, associated with each data item in a linked representation is a pointer or
link to the next item. In general, a linked list is comprised of nodes; each node has zero
or more data fields and one or more link or pointer fields.

Figure 4.1 shows how some of the elements in our list of three-letter words may be
represented in memory by using pointers. The elements of the list are stored in a one-
dimensional array called daza, but the elements no longer occur in sequential order, BAT
before CAT before EAT, and so on. Instead we relax this restriction and allow them to
appear anywhere in the array and in any order. To remind us of the real order, a second
array, link, is added. The values in this array are pointers to elements in the data array.
For any i, data [i ] and link [i ] together comprise a node. Since the list starts at data[8] =
BAT, let us set a variable first = 8. link[8] has the value 3, which means it points to
datal3], which contains CAT. Since link [3] = 4, the next element, EAT, in the list is in
data {4]. The element after EAT is in data [link[4]]. By continuing in this way we can
list all the words in the proper order. We recognize that we have come to the end of our
ordered list when /ink equals zero. To ensure that a link of zero always signifies the end
of a list, we do not use position zero of data to store a list element.

It is customary to draw linked lists as an ordered sequence of nodes with links
being represented by arrows, as in Figure 4.2. Notice that we do not explicitly put in the
values of the pointers but simply draw arrows to indicate they are there. The arrows
reinforce in our own mind the facts that (1) the nodes do not actually reside in sequential
locations and (2) the actual locations of nodes are immaterial. Therefore, when we write
a program that works with lists, we do not look for a specific address except when we
test for zero. The linked structures of Figures 4.1 and 4.2 are called singly linked lists or
chains. In a singly linked list, each node has exactly one pointer field. A chain is a singly
linked list that is comprised of zero or more nodes. When the number of nodes is zero,
the chain is empty. The nodes of a non-empty chain are ordered so that the first node
links to the second node; the second to the third; and so on. The last node of a chain has
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data link

1 | HAT 15
2
3 | CAT 4
4 | EAT 9
5
6
7 | WAT
8 | BAT 3
9 | FAT

10

11 | VAT 7

Figure 4.1: Nonsequential list-representation

a0 link.

first

(BAT] - ~{CAT [ J- o BAT] } -

Figure 4.2: Usual way to draw a linked list

Let us now see why it is easier to make insertions and deletions at arbitrary posi-
tions using a linked HLst rather than a sequential list. To insert the data item GAT
between FAT and HAT, the following steps are adequate:

{1) Getanode ¢ that is currently unused.
(2) Setthe data field of a to GAT.



(3)  Set the link field of a to point to the node after FAT, which contains HAT,
(4}  Set the link field of the node containing FAT to a.

Figure 4.3(a) shows how the arrays data and link will be changed after we insert GAT.
Figure 4.3(b) shows how we can draw the insertion using our arrow notation. Dashed
arrows are new ones. The important thing to notice is that when we insert GAT, we do
not have to move any elements that are already in the list. We have overcome the need
to move data at the expense of the storage needed for the field link. Usually, this penalty
is not too severe. When each list element is large, significant time is saved by not having
to move elements during an insert or delete.

data link
1 | HAT 15
2
3 | CAT 4
4 | EAT 9
5 | GAT 1
6
7 | WAT 0
8 | BAT 3
9 | FAT 5
10
11 | VAT 7
first (a) Insert GAT into data [5]

| BAT [ 4~ CATI_HEATIHFAT{MHAﬂP
S

a—={OKT

(b) Insert node GAT into list

Figure 4.3: Inserting into a linked list

Now suppose we want to delete GAT from the list. Al we need to do is find the
element that immediately precedes GAT, which is FAT, and set /ink[9] to the position of
HAT which is 1. Again, there is no need to move the data around. Even though the link
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of GAT still contains a pointer to HAT, GAT is no longer in the list as it cannot be
reached by starting at the first element of list and following links (see Figure 4.4).

first P

[BAT| {-={CAT] +=EAT| - ={FAT)|

Figure 4.4: Delete GAT

4.2 REPRESENTING CHAINSINC s _
We need the following capabilities to make linked representations pom@_. S

(1) A mechanism for defining a node's structure, that is, the fields it contains. We use
self-referential structures, discussed in Section 2.3.4, to do this.

(2) A way to create new nodes when we need them. The MALLOC macros defined in
Section 1.2.2 handles this operation.

(3) A way to remove nodes that we no longer need. The free function handles this
operation.

We will present several small examples to show how to create and use linked lists in C.

Example 4.1 [List of words]: To create a linked list of words, we first define a node
structure for the list. This structure specifies the type of each of the fields. From our pre-
vious discussion we know that our structure must contain a character array and a pointer
to the next node. The necessary declarations are:

typedef struct listNode *listPointer;
typedef struct {

char datal[4];

listPointer link;

} listNede;

These declarations contain an example of a self-referential structure. Notice that we
have defined the pointer (listPointer) to the struct before we defined-the struct (fisz-
Node). C allows us to create a pointer to a type that does not yet exist because otherwise
we would face a paradox: we cannot define a pointer to a nonexistent type, but to define



the new type we must include a pointer to the type.
After defining the node’s structure, we create a new empty list. This is accom-
plished by the statement:

listPointer first = NULL;

This statement indicates that we have a new list called firsz. Remember that first
contains the address of the start of theslist. Since the new list is initially empty, its start-
ing address is zero. Therefore, we use the reserved word NULL to signify this condition.
We also can use an IS_EMPTY macro to test for an empty list:

#define IS EMPTY (first) (!(first))

To create new nodes for our list we use the MALLOC macro of Section 1.2.2. We
would apply this macro as follows to obtain a new node for our list:

MALLOC (first, sizeof(*first));

We are now ready to assign values to the fields of the node. This introduces a new
operator, —. If e is a pointer to a structure that contains the field name, then e—name is
a shorthand way of writing the expression (*¢).name. The — operator is referred to as
the structure member operator, and its use is preferred when one has a pointer to a struct
rather than the * and dot notation.

To place the word BAT into our list we use the statements:

strepy(first—data, "BAT");
first-»link = NULL;

These statements create the list illustrated in Figure 4.5. Notice that the node has a nuil
link field because there is no next node in the list. O

Example 4.2 [Two-node linked list]: We want 1o create a linked list of integers. The
node structure is defined as:
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®first
< first Sdatg —— =
B A T \Q NULL
L]
firse q‘ T ' )
: first > data|0] | first = data [2] first — link

Sirst > data[1] first = data [3]

Figure 4.5: Referencing the fields of a node

typedef struct listNode *1listPointer;
typedef struct {

int data;

listPointer link;

} listNoede;

A linked list with two nodes is created by function create2 (Program 4.1). We set
the data field of the first node to 10 and that of the second to 20. The variable first is a
pointer to the first node; second is a pointer to the second node. Notice that the link field
of the first node is set to point to the second node, while the link field of the second node
is NULL. The variable first, which is the pointer to the start of the list, is returned by
createZ. Figure 4.6 shows the resulting list structure, O .

Example 4.3 [List insertion]: Let first be a pointer to a linked list as in Example 4.2.
Assume that we want to insert a node with a data field of 50 after some arbitrary node x.
Function insert (Program 4.2) accomplishes this task. In this function, we pass in two
pointer variables. The variable, first, is the pointer to the first node in the list. If this
variable contains a null address (i.e., there are no nodes in the list), we want to change
first so that it points to the node with 50 in its data field. This means that we must pass in
the address of firsr. This is why we use the declaration listPointer *first. Since the value
of the second pointer, x, does not change, we do not need to pass in its address as a
parameter. A typical function call would be insert (&first, x); where first points to the
sturt of the list and x points to the node aftzr which the insertion is to take place.

The function insert uses an if - - - else statement to distinguish between empty and
nonempty lists. For an empty list, we set temp's link field to NULL and change the value
of first to the address of temp. For a nonempty list, we insert the temp node between x



listPointer create?2 ()

{/* create a linked list with two nodes */
listPointer first, second;
MALLOC (first, sizeof(*first));
MALLCC (second, sizecf{*second));
second—link = NULL;
second—data = 20;
first—data = 10;
first—link = second;
return first;

}

-

Program 4.1: Create a two-node list

frst — 10 [ =] 30 [0]

Figure 4.6: A two-node list

and the node pointed 1o by its link field. Figure 4.7 shows the two cases.

Example 4.4 [List deletion]: Deleting an arbitrary node from a list is slightly more com-
plicated than insertion because deletion depends on the location of the node. Assume
that we have three pointers: first points to the start of the list, x points to the node that we
wish to delete, and #rail points to the node that precedes x. Figures 4.8 and 4.9 show two
.examples. In Figure 4.8, the node to be deleted is the first node in the list. This means
that we must change the value of firsz. In Figure 4.9, since x is not the first node, we sim-
ply change the link field in traif to point to the link field in x.

An arbitrary node is deleted from a linked list by function delete (Program 4.3). In
addition to changing the link fields, or the value of *first, delete also returns the space
that was allocated to the deleted node to the system memory. To accomplish this task, we
use free. O

Example 4.5 [Printing out a list]: Program 4.4 prints the data fields of the nodes in a
list. To do this we first print out the contents of first’s data field, then we replace first
with the address in its link field. We continue printing out the data field and moving to

Taa

1\'
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vold insert (listPeinter *first, listPointer x)
{/* insert a new node with data = 50 into the chain
first after node x */
listPointer temp;
MALLOC (temp, sizeof (*temp)};
temp—data = 50;
if (*first) {
temp—link = x—link;
x—link = temp;
}
else {
temp—link = NULL;
*first = temp;

1

Program 4.2: Simple insert into front of list

first x

-—%llﬁ'%/flb-”ﬂ

50 .

() . (b)

Figure 4.7: Inserting into an empty and nonempty list

the next node until we reach the end of the list. O



first, x trail = NULL

i
|

N )

{a) Before deletion (b) After deletion

Figure 4.8: List before and after the function call delete( & first, NULL, first);

first, trail ¥ first

L0 ] =130 | —={ 20 J0] [ 10 ] = 20 |0

{a) Before deletion (b) After deletion

Figure 4.9: List after the function call delete(&first, v, y—link);

EXERCISES

Rewrite delete (Program 4.3) so that it uses only two pointers, first and trail.

2. Assume that we have a list of integers as in Example 4.2. Create a function that
searches for an integer, num. If num is in the list, the function should return a
pointer to the node that contains num. Otherwise it shouid return NULL.

3. Write a function that deletes a node containing a number, num, from a list. Use the
search function (Exercise 2} to determine if nurm is in the list..

Write a function, length, that returns the number of nodes in a list.

5. Let p be a pointer to the first node in a singly linked list. -Write a procedure to
delete every other node beginning with node p (i.e., the first, third, fifth, etc. nodes
of the list are deleted). What is the time complexity of your algorithm?

6. Letx=(x,x3,...,x,)and vy = (vy,v2, - . ., ¥} be two linked lists, Assume that
in each list, the nodes are in nondecreasing order of their data field values. Write
an algorithm to merge the two lists together to obtain a new linked list z in which
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void delete{listPointer *first, listPointer trail,
listPcointer x)
{/* delete x from the list, trail is the preceding node
and *first is the front of the list */

if (trail)

trail—link = x—1link;
else

*first = (*first)—link;
free(x);

}

Program 4.3: Deletion from a list

void printList{listPointer first)
{
printf("The list contains: "};
for {; first; first = first—link}
printf ("%4d", £irst-»data);
printf("\n"});
}

Program 4.4: Printing a list

the nodes are also in thfs order. Following the merge, x and y do not exist as indi-
vidual lists. Each node initially in x or y is now in z. No additional nodes may be
used. What is the time complexity of your algorithm?

7. Let list; = (xq,x2, "= ,x,)and listy = (¥, ¥2. " . ¥m). Write a function to
merge the two lists together to obtain the linked list, fist; = (x), yi, X2, ¥2, ~*
Xy Y Xmats 0 s Xp)ifm<myand lista =, ¥, X2, Y2, " s ¥ms Yoo Fnels 07 s
xp)ifm > n.

8. § Itis possible to traverse a linked list in both directions (i.e., left~to right and res-
tricted right-to-left) by reversing the links during the left-to-right traversal. A pos-
sible configuration for the list upder this scheme is given in Figure 4.10. The vari-
able r points to the node currently being examined and / to the node on its left.
Note that all nodes to the left of r have their links reversed.

(a) Write a function to move r to the right n nodes from a given position (1, 7).
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Figure 4.10: Possible configuration for a chain traversed in both directions

(b)  Write a function to move r to the left » nodes from any given position (1, r).

4.3 LINKED STACKS AND QUEUES

Previously we represented stacks and queves sequentially. Such a representation proved
efficient if we had only one stack or one queue. However, when several stacks and
queues coexisted, there was no efficient way to represent them sequentially. Figure 4.10
shows a linked stack and a linked queue. Notice that the direction of links for both the
stack and the queue facilitate easy insertion and deletion of nodes. In the case of Figure
4.10(a), we can easily add or delete a node from the top of ¢he stack. In the case of Fig-
ure 4.11(b), we can easily add a node to the rear of the queue and add or delete a node at
the front, atthough we normally will not add items to the front of a queue.

If we wish to represent n < MAX_STACKS stacks simultaneously, we begin with
the declarations:

#define MAX_STACKS 1C /* maximum number of stacks */
typedef struct |

int key;

/* other fields */

} element;
typedef struct stack *stackPointer;
‘typedef struct |

element data;

stackPointer link;

} stack; 5
stackPointer top[MAX._STACKS]:;

We assume that the inijtial condition for the stacks is:

topli}=NULL, 0<i < MAX _STACKS

4
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data link

Ei — top
L
L’ front : rear
E]:_J J{ data link
T A T

{b) Linked queue

(a) Linked stack

Figure 4.11: Linked stack and queue

and the boundary condition is:
top [i 1 = NULL iff the ith stack is empty

Functions push (Program 4.5) and pop (Program 4.6) add and delete items to/from
a stack. The code for each is straightforward. Function push creates a hew node, temp,
and places item in the data field and top in the link field. The variable top is then
changed to point 10 temp. A typical function call to add an element to the ith stack
would be push (i,item). Function pop returns the top element and changes fop to point to
the address contained in its link field. The removed node is then returned to system
memory. A typical function call to delete an clement from the ith stack would be
item = pop (i);

To represent m < MAX-QUEUES queues simultaneously, we begin with the
declarations:



void push{int i, element item)
A/* add item to the ith stack */
stackPointer temp;
MALLOC{temp, sizeof(*temp));
temp—data - item;
temp—link = toplil;
topl(i]l = temp;
)

Program 4.5: Add to a linked stack

element pop{int i)
{/* remove top element from the ith stack */
stackPointer temp = topl[i];
element item;
if (ltemp)
return stackEmpty();
item = temp—data;
topl[i] = temp—link;
free(temp);
return item;

}

Program 4.6: Delete from a linked stack

#define MAX-QUEUES 10 /* maximum number of queues */
typedef struct gqueue *queuePointer;
typedef struct |
element data;
gqueuePointer link;
} queue;
queuePointer front [MAX QUEUES], rear[MAX-QUEUES);

We assume that the initial condition for the queues is:

Jrontli] = NULL,0 < i < MAX_QUEUES
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and the boundary condition is:
Jfront[i] = NULL iff the ith queue is empty

Functions addg (Program 4.7) and deleteq (Program 4.8) implement the add and
delete operations for multiple queues. Function addg is more complex than push
because we must check for an empty queue. If the queve is empty, we change front to
point to the new node; ctherwise we change rear’s link field to point to the new node. In
either case, we then change rear to point to the new node. Function deleteq is similar to
pop since we are removing the node that is currently at the start of the list. Typical func-
tion calls would be addg (i,item); and item = deleteq (i);.

void addg(i, item)
{/* add item to the rear of gqueue i */
queuePointer temp;
MALLOC (temp, sizecof(*temp));
temp—data = item;
temp—link = NULL;
if (frontiil}
rear[il-»link = temp;

else
front[i] = temp;
rear[i] = temp;

}

Program 4.7: Add to the rear of a linked queue

The solution presented above to the n-stack, m-queue problem is both computa-
tionally and conceptually simple. We no longer need to shift stacks or queues to make
space. Computation can proceed as long as there is memory available. Although we
need additional space for the link field, the use of linked lists makes sense because the
overhead incurred by the storage of the links is overridden by (1) the ability to represent
lists in a simple way, and (2) the reduced computing time required by linked representa-
tions.

EXERCISES

1. A palindrome is a word or phrase that is the same when spelled from the front or
the back. For example, "reviver" and "Able was I ere I saw Elba" dre both palin-
dromes. We can determine if‘a word or phrase is a palindrome by using a stack.
Write a C function that returns TRUE if a word or phrase is a palindrome and



element deleteg{int i)

{/* delete an element from queue 1 */
queuePointer temp = front[i];
element item;
if {!'temp)

return queueEmpty () ;
item = temp—data;
frent [i]= temp—link;
free(temp);
return item;
}

Program 4.8: Delete from the front of a linked queue

FALSE if it is not.

2. We can use a stack to determine if the parentheses in an expression are properly
nested. Write a C function that does this.

3. Consider the hypothetical data type X2. X2 is a linear list with the restriction that
while additions to the list may be made at either end, deletions can be made at one
end only. Design a linked list representation for X2, Write addition and deletion
functions for X 2. Specify initial and boundary conditions for your representation.

44 POLYNOMIALS

441 Polynomial Representation

Let us tackle a reasonably complex problem using linked lists. This problem, the mani-
pulation of symbolic polynomials, has become a classic example of list processing. As
in Chapter 2, we wish to be able to represent any number of different polynomials as
long as memory is available. In general, we want to represent the polynomial:

AX)=a, x " + - +agx™

where the a; are nonzero coefficients and the e; are nonnegative integer exponents such
that e,, | > e,.» > --- >¢&| > ey 2 0. We represent each term as a node containing
coefficient and exponent fields, as well as a pointer to the next term. Assuming that the
coefficients are integers, the type declarations are:
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typedef struct polyNode *polyPointer;
typedef struct {

int coef;

int expon;

polyPointer link;

} polyNode;
pclyPointer a,b;

We draw polyNodes as:

Icoef I expon [ link ‘

Figure 4.12 shows how we would store the polynomials

a=3x"+2%% +1
and
b =8x"—3x1% + 1026

¢ S [W] | 28] o TO]T]

(a)

b 8 | 14 3[10] J--={10] 67 0]

®)

Figure 4.12: Representation of 3x ' +2x%+1 and 8x'-3x'%+10x¢

4.4.2 Adding Polynomials

To add two polynomials, we examine their terms starting at the nodes pointed to by a and
b. If the exponents of the two terms are equal, we add the two coefficients and create a
new term for the resuit. We also move the pointers o the next nodes in g and b. If the
exponent of the current term in « is less than the exponent of the current term in b, then
we create a duplicate term of b, attach this term to the result, called ¢, and advance the
pointer to the next term in b. We take a similar action on a if a—expon > b—expon,
Figure 4.13 illustrates this process for the polynomials represented in Figure 4.12.
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{iii) ¢ — expon > b — expon

Figure 4.13: Generating the first three terms of c = a +b

Each time we generate a new node, we set its coef and expon fields and append it
to the end of ¢, To avoid having to search for the last node in ¢ each time we add a new
node, we keep a pointer, rear, which points to the current last node in ¢, The complete
addition algorithm is specified by padd (Program 4.9). To create a new node and append
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it to the end of ¢, padd uses atrach (Program 4.10). To make things work out neatly, ini-
tially we give ¢ a single node with no values, which we delete at the end of the function.
Although this is somewhat inelegant, it avoids more computation.

polyPointer padd(polyPointer a, polyPointer b)
{/* return a polynomial which is the sum of a and b */
polyPointer ¢, rear, temp;
int sum;
MALLOC (rear, sizeof (*rear));
C = rear;
while (a && b)
switch {COMPARE (a—expon,b—expon}) |
case -1: /* a—expon < b—expon */
attach(b=»coef, b—oexpon, &rear) ;
b = b—link;
break;
case 0: /* a—expon = b—expon */
sum = a—ccef + b—»coef;
if {sum) attach(sum,a—expon, &rear);
a = a—link; b = b—link; break;
case 1: /* a-sexpon. > b—expon */
attach{a—coef, a—2expon, &rear};
a = a—1link;
}
/* copy rest of list a and then list b */
for (; a; a = a—link) attach(a—ecoef,a—aexpon,&rear)}
for (; b; b = b—link) attach(b—écoef,b—éexpon,&féﬁr);
rear—link = NULL; '
/* delete extra initial node */
temp = ¢; ¢ = ¢c—link; free(temp);
return c;

Program 4.9: Add two polynomials

This is our first complete example of list processing, so you should study it care-
fully. The basic algorithm is straightforward, using a streaming process that moves
along the two polynomials, either copying terms or adding them to the result. Thus, the
while loop has three cases depending on whether the next pair of exponents are =, <, or
>. Notice that there are five places where we create a new term, justifying our use of
function attach.



void attach(float coefficient, int exponent,

polyPointer *ptr)

{/* create a new node with coef = coefficient and expon =
exponent, attach it to the node pointed to by ptr.
ptr is updated to point to this new node */

polyPointer temp;
MALLOC(temp, sizeof(*temp));
temp—coef = coefficient;
temp—rexpon = exponent;
(*ptr)—link = temp;

*ptr = temp;

Program 4.10: Attach a node to the end of a list

Analysis of padd: To determine the computing time of padd, we first determine which
operations coniribute to the cost. For this algorithm, there are three cost measures:

(1) coefficient additions
(2) exponent comparisons

(3) creation of new nodes for ¢

If we assume that each of these operations takes a single unit of time if done once,
then the number of times that we perform these operations determines the total time
taken by padd. This number clearly depends on how many terms are present in the poly-
nomials @ and b. Assume that @ and b have m and n terms, respectively:

AXy=apn x™" + - +agx™

B(x)=by 2™ + -+ 4 hox)

where a;, b; #0ande,_| > -+ >e420,f,. 1 > - - > fy 20. Then clearly the number
of coefficient additions varies as:

0 < number of coefficient additions < min{m,n} '
The lower bound is achieved when none of the exponents are equal, while the upper is

achieved when the exponents of one polynomial are a subset of the exponents of the
other.
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As for the exponent comparisons, we make one comparison on each iteration of
the while loop. On each iteration, either a or b or both move to the next term. Since the
total number of terms is m + s, the number of iterations and hence the number of
exponent comparisons is bounded by m + n. You can easily construct a case when m + n
— 1 comparisons will be necessary, for example, m = n and

Cmal Pl €ma>fua> e >fi>ey>f

The maximum number of terms in ¢ is m + n, and so no more than m + 7 new terms are
created (this excludes the additional node that is attached to the front of ¢ and later
removed).

In summary, the maximum number of executions of any statement in padd is
bounded above by m + n. Therefore, the computing time is O(m + n). This means that if
we implement and run the algorithm on a computer, the time it takes will be ¢ m + con +
c3, where ¢, ¢,, ¢y are constants. Since any algorithm that adds two polynomials must
look at each nonzero term at least once, padd is optimal to within a constant factor. O

4.4.3 Erasing Polynomials

The use of linked lists is well suited to polynomial operations. We can easily imagine
writing a collection of functions for input, output, addition, subtraction, and multiplica-
tion of polynomials using linked lists as the means of representation. A hypothetical
user who wishes to read in polynomials a(x), b(x), and d (x) and then compute e (x) =
ai{x)* b(x)+ d(x)would write his or her main function as:

polyPointer a, b, d, e

a

= readPoly():
b = readPoly();
d = readPoly();

temp = pmult(a,b);
e = padd(temp,d);
printPoly(e);

If our user wishes to compute more potynomials, it would be useful to reclaim the nodes
that are being used to represent temp (x) since we created temp (x) only to hold a partial
result for d(x). By returning the nodes of remp (x), we may use them to hold other poly-
nomials. One by one, erase (Program 4.11) frees the nodes in temp.



void erase(polyPointer *ptr)
{/* erase the polynomial pointed to by ptr */
polyPointer temp;
while (*ptr) |
temp = *ptr;
*ptr = (*ptr)—link;
free(temp);

]

Program 4.11: Erasing a polynomial

444 Circular List Representation of Polynomials

We can free all the nodes of a polynomial more efficiently if we modify our list structure
so that the link field of the last node points to the first node in the list (see Figure 4.14).
We call this a circular list. A singly linked list in which the last node has a null link is
called a chain.

G {2 [ 8] F~{TT07 =t

Figure 4.14: Circular representation of 3x ' + 2x% + 1

As we indicated earlier, we free nodes that are no longer in use so that we may
reuse these nodes later. We can meet this objective, and obtain ap efficient erase algo-
rithm for circular lists, by maintaining our own list (as a chain) of nodes that have been
"freed." When we need a new node, we examine this list. If the list is not empty, then
we may use one of its nodes. Only when the list is empty do we need to use malloc to
create a new node.

Let avail be a variable of type polyPointer that points to the first node in our list of
freed nodes, Henceforth, we call this list the available space list or avail list. Initially,
we set gvail to NULL. Instead of using malloc and free, we now use getNode (Program
4.12) dnd retNode (Program 4.13).

We may erase a circular list in a fixed amount of time independent of the number
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polyPointer getNode (void) .
{/* provide a node for use */
polyPointer node;
if (avail) {
node = avail;
avail = avail—link;
}
else
MALLOC (node, sizeof {*node));
return node;

}

Program 4.12: getNode function

void retNode(polyPointer node)

{/* return a node to the available list */
node-»link = avail;
avail = node;

-}

Program 4.13: retNode function

of nodes in the list using cerase (Program 4.14).

A direct changeover to the structure of Figure 4.14 creates problems when we
implement the other polynomial operations since we must handle the zero polynomial as
a special case. To avoid this special case, we introduce a header node into each polyno-
mial, that is, each polynomial, zero or nonzero, contains one additional node. The expon
and coef fields of this node are irrelevant. Thus, the zero polynomial has the representa-
tion of Figure 4.15(a), while a(x) = 3x"* + 2x® + 1 has the representation of Figure
4.15(b).

To simplify the addition algorithm for polynomials represented as circular lists, we
set the expon field of the header node to —1. Program 4.15 gives the function to add
polynomials represented in this way.



void cerase(polyPointer *ptr)
{/* erase the circular list pointed to by ptr */
poclyPointer temp;
if {(*ptr) {
temp = {(*ptr)—link;
(*ptry—link = avail;
avail = temp;
*ptr = NULL;

1

Program 4.14: Erasing a circular list

ot T

(a) Zero polynomial
header
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Figure 4.15: Example polynomials with header nodes

44.5 Summary

Let us review what we have done so far. We have introduced the concepts of a singly
linked list, a chain, and a singly linked circular list. Each node on one of these lists con-
sists of exactly one link ficld and at least one other field.

In dealing with polynomials, we found it convenient to use circular lists. Another
concept we introduced was an available space list. This list consisted of all nodes that
had been used at least once and were not currently in use. By using the available space
list and getNode, retNode, and cerase, it became possible to erase circular lists in
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polyPointer cpadd(polyPointer a, polyPointer b)
{/* polynomials a and b are singly linked circular lists
with a header node. Return a polynomial which is
the sum of a and b */
polyPointer startA, ¢, lastC;
int sum, done = FALSE;

startA = a; /* record start of a */

a = a—link; /* skip header node for a and b*/
b = b—>link;

¢ = getNode(); /* get a header node for sum */
c—»expon = —1; lastC = ¢;

do { :

switch (COMPARE (a—expon, b—expon}) {
case -1: /* a—expon < b—expon */
attach (b—coef, boexpon, &lastC);
b = bolink;

break;

case 0: /* a—expon = b—expon */
if (startA == a} done = TRUE;
else {

sum = a—coef + b—coef;
if (sum) attach(sum,a—expon, &lastC);
a = a—link; b = b—link;
}
break;
case l: /* a—expon > b—expon */
attach (a—coef, a—expon, &lastl);
a = a—link;
h
} while (!done);
lastC=3link = ¢;
return c;

Program 4.15: Adding two polynomials represented as circular lists with header nodes

constant time, and also to reuse all nodes not currently in use. As we continue, we shali
see more problems that call for variations in node structure and list representation
because of the operations we wish to perform.



EXERCISES

1.

Noo e

Write a function, pread, that reads in n pairs of coefficients and exponents, (coef;,
expon;), 0 €i < n of a polynomial, x. Assume that expon;,; > expon;, 0<i < n-2,
and that coef; # 0, 0 £ i < n. Show that this operation can be performed in O(n)
time.

Let @ and b be pointers to two polynomials. Write a function to compute the pro-
duct polynomial d = a*b. Your function should leave a and b unaltered and
create d as a new list. Show that if n and m are the number of terms in & and b,
respectively, then this multiplication can be carried out in O(nm?) or O(n?m) time.

Let a be a pointer to a polynomial. Write a function, peval, to evaluate the polyno-
mial a af point x, where x is some fleating point number.

Rewrite Exercise 1 using a circular representation for the polynomial.
Rewrite Exercise 2 using a circular representation for the polynomial.
Rewrite Exercise 3 using a circular representation for the polynomial.

§ {Programming project] Design and build a linked allocation system to represent
and manipulate polynomials. You should use circularly linked lists with header
nodes. Each term of the polynomial will be represented as a node, using the fol-
lowing structure:

‘coef t expon l link‘

In order to erase polynomials efficiently, use the available space list and associated
functions discussed in this section.

Write and test the following functions:

(a) pread. Read in a polynomial and convert it to its circular representation,
Return a pointer to the header node of this polynomial.

(b)  pwrite. Output the polynomial using a form that clearly displays it.
(¢} padd. Compute ¢ = a + b. Do not change either a or b,

(d) psub. Compute ¢ = a — b. Do not change either a or b.

(e)  pmuit. Compute ¢ = a*b. Do not change either a or b.

(f)  eval. Evaluate a polynomial at some point, a, where a is a floating point con-
stant. Return the result as a floating point.

(g) perase. Return the polynomial represented as a circular list to the available
, 8pace list.
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4.5 ADDITIONAL LIST OPERATIONS

4,5.1 Operations For Chains

It is often necessary, and desirable, to build a variety of functions for manipulating
singly linked lists. Some that we have seen already are getNode and retNode, which get
and return nodes to the available space list. Inverting (or reversing) a chain (Program
4.16) is another useful operation. This routine is especially interesting because we can
do it "in place” if we use three pointers. We use the following declarations:

typedef struct listNode *listPointer;
typedef struct ({

char data;

listPointer link;

} listNode;

Try out this function with at least three examples, an empty list and lists of one and
two nodes, so that you understand how it works. For a list of length 2 1 nodes, the while
loop is executed length times and so the computing time is linear or O(length).

Another useful function is one that concatenates two chains, prrl and ptr2 (Pro-
gram 4.17). The complexity of this function is O(length of list pzr1). Since this function
does not allocate additional storage for the new list, ptrl also contains the concatenated
list. {The exercises explore a concatenation function that does not alter ptrl.)

listPointer invert{listPointer lead)
{/* invert the list pointed to by lead */
listPointer middle,trail;
middle = NULL;
while (lead) {
trail = middle;
middle = lead;
lead = lead—link;
middle—link = trail;
}
return middle;

}

Program 4.16: Inverting a singly linked list



listPointer concaternate{listPointer ptrl, listPointer ptr2}
{/* produce a new list that contains the list
ptrl followed by the list ptr2. The
list pointed to by ptrl is changed permanently */
listPointer temp;
/* check for empty lists */
if (!ptrl) return ptr2;
if (!ptr2) return ptril;

/* neither list is empty, find end of first list */
for (temp = ptrl; temp-slink; temp = temp—link} ;

/* link end of first to start of second */
temp—link = ptr2;
}

Program 4.17: Concatenating singly linked lists

4.5.2 Operations For Circularly Linked Lists

Now let us take another look at circular lists like the one in Figure 4.14. By keeping a
pointer fast to the last node in the list rather than to the first, we are able to insert an ele-
ment at both the front and end with ease. Had we kept a pointer to the first node instead
of the last node, inserting at the front would require us to must move down the entire
length of the list until we find the last node so that we can change the pointer in the last
node to point to the new first node. Program 4.18 gives the code at insert a node at the
front of a circular list. To insert at the rear, we only need to add the additional statement
*last = node to the else clause of insertFront (Program 4.18).

As another example of a simple function for circular lists, we write a function
{Program 4.19) that determines the length of such a list.

EXERCISES

1, Create a function that searches for an integer, num, in a circularly linked list. The
function should return a pointer to the node that contains num if num is in the list
and NULL otherwise.

2. Write a function that deletes a node containing a number, num, from a circularly
linked list. Your function should first search for num.
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veid insertFront (listPointer *last, listPointer node)
{/* insert node at the front of the circular list whose
last node is last */
if (! {*last)) {
/* list is empty, change last to point to new entry */
*last = node;
node—link = node;

}

else {
/* list is not empty, add new entry at front */
node—link = (*last)—link;

(*last)—1link = node;

}

Program 4.18: Inserting at the front of a list

int length{listPointer last)
{/* find the length of the circular list last */
listPointer temp;
int count = 0;
if (last) {
temp = last;

do {
count++;
temp = temp—link;
} while (temp != last);

1

return count;

1

Program 4.19: Finding the length of a circular list

3. Write a function to concalenate two circular lists together. Assume that the
pointer to each such list points to the last node. Your function should return a
pointer to the last node of the concatenated circular list. Following the concatena-
tion, the input lists do not exist independently. What is the time complexity of



your function?
4. Write a function to reverse the direction of pointers in a circular list.

4.6 EQUIVALENCE CLASSES

Let us put together some of,the concepts on linked and sequential representations to
solve a problem that arises in the design and manufacture of very large-scale integrated
{VLSI) circuits. One of the steps in the manufacture of a VLSI circuit involves exposing
a silicon wafer using a series of masks. Each mask consists of several polygons,
Polygons that overlap electrically are equivalent and electrical equivalence specifies a
relationship among mask polygons. This relation has several properties that it shares
with other equivalence relations, such as the standard mathematical equals. Suppose that
we denote an arbitrary equivalence relation by the symbol = and that:

(1}  For any polygon x, x =x, that is, x is electrically equivalent to itself, Thus, = is
reflexive.

{2) For any two polygons, x and y, if x =y then y =x. Thus, the relation = is sym-
metric.

(3) For any three polygons, x, y, and z, if x =y and y = z then x = z. For example, if x
and y are electrically equivalent and y and z are also equivalent, then x and z are
also electrically equivalent. Thus, the relation = is transitive.

Definition: A relation, =, over a set, §, is said to be an equivalence relation over § iffit is
symmetric, reflexive, and transitive over S. 0

Examples of equivalence relations are numerous. For example, the "equal to" (=)
relationship is an equivalence relation since

) x=x
(2) x=yimpliessy =x
(3) x=yandy =zimpliesthatx =z
We can use an equivalence relation to partition a set § into equivalence classes

such that two members x and y of § are in the same equivalence class iffx = y. For exam-
ple, if we have twelve polygons numbered O through 11 and the following pairs overlap:

0=4,3=1,6=10,8=9,7=4,6=8,3=5,2=11,11=0

then, as a result of the reflexivity, symmetry, and transitivity of the relation =, we can
partition the twelve polygons into the following equivalence classes:
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{0,2,4,7,11}; {1, 3,5}: {6, 8,9, 10}

These equivalence classes are important because they define a signal net that we can use
to verify the correctness of the masks.

The algorithm to determine equivalence works in two phases. In the first phase,
we read in and store the equivalence pairs <i, j>. In the second phase we begin at 0 and
find all pairs of the form <0, j>, where 0 and j are in the same equivalence class. By
transitivity, all pairs of the form <j, k> imply that & is in the same equivalence class as
0. We continue in this way until we have found, marked, and printed the entire
equivalence class containing 0. Then we continue on.

Our first design attempt appears in Program 4.20. Let m and n represent the
number of related pairs and the number of objects, respectively. We first must figure out
which data structure we should use to hold these pairs. To determine this, we examine
the operations that are required. The pair <i, j > is essentially two random integers in the
range 0 to n-1. Easy random access would dictate an array, say pairsin][m]. The ith
row would contain the elements, j, that are paired directly to i in the input. However, this
could waste a lot of space since very few of the array elements would be used. It also
might require considerable time to insert a new pair, <i, k>, into row { since we would
have to scan the row for the next free location or use more storage.

void equivalence(}
{
initialize;
while (there are more pairs) {
read the next pair <i, j>;
process this pair;
i
initialize the output;
do
output a new equivalence class;
while (not done);
} -

Program 4.20: First pass at equivalence algorithm

These considerations lead us to a linked list representation for each row. QOur node
structure requires only a data and a link field. However, since we still need random
access to the ith row, we use a one-dimensional array, seqg [r ], to hold the header nodes
of the n lists. For the second phase of the algorithm, we need a mechanism that tells us
whether or not the object, i, has been printed. We use the array out [n] and the constants
TRUE and FALSE for this purpose. Qur next refinement appears in Program 4.21.



void equivalence(}
{
initialize seq to NULL and ocut toc TRUE;
while (there are more pairs) {
read the next pair, <i, j»;
put j on the seq[i] list;
put i on the seq[j] list;
}
for (i = 0; 1 < nj; 1i++)
if (out[il}) |
out[i] = FALSE;
output this equivalence class;

h

Program 4.21: A more detailed version of the equivalence algorithm

Let us simulate this algorithm, as we have developed it thus far, using the previous
data set. After the while loop is completed the lists resemble those appearing in Figure
4.16. For each relation i = j, we use two nodes. The variable seq [i ] points to the list of
nodes that contains every number that is directly equivalent to { by an input relation.

first [O1 [11 [21 (31 [ (51 (61 [71 (81 [91 (0] [11]

data 11 3 11 5 7 3 8 4 6 8 6 0
link 0 0 0 0 0 0

data 4 1 0 10 9 2
link 0 0 0] 0 0 0

Figure 4.16: Lists after pairs have been input
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In phase two, we scan the seq array for the first i, 0 € i < n, such that out[i] =
TRUE. Each element in the list seq[i] is printed. To process the remaining lists which,
by transitivity, belong in the same class as i, we create a stack of their nodes. We do this
by changing the link fields so that they point in the reverse direction. Program 4.22 con-
tains the complete equivalence algorithm.

#include <stdio.h>
#include <alloc.h>
#define MAX_SIZE 24
#define FALSE O
#define TRUE 1
typedef struct node *ncdePointer;
typedef struct {
int data;
nodePointer link;
} necde;
volid main{void)
{
short int out[MAX_SIZE];
nodePointer seq[MAX_SIZE];
nodePointer X,y,top;
int i, j,n;

printf ("Enter the size (<= %d) ",MAX SIZE);
scanf ("%d", &n);

for (i = 0; 1 < n; i++) {
/* initialize seq and out */
out[i] = TRUE; seqg[i] = NULL;

}

/* Phase 1: Input the equivalence pairs: */
printf{"Enter a pair of numbers (-1 -1 toc quit}: ");
scanf ("%d%d", &i,&7) ;
while (i »>= 0} {
MALLOC(x, sizeof(*x}));
x—data = j; x—=link = seql[i]; seqli) = x;
MALLQC (x, sizeof (*x))
%x—data = 1i; x-»link seql[i]; seqlj] X;
printf("Enter a pair of numbers (-1 -1 to quit): ");
scanf ("&d%d", &1, &7) ;

o



/* Phase 2: output the equivalence classes */
for (1 = 0; 1 < n; i++)
if {(out[il) {
printf ("\nNew class: %bd",i};
out[i] = FALSE; /* set class to false */
x = seq[i]; top = NULL; /* initialize stack */
for (;;) | /* find rest of class */
while (x} { /* process list */
j = x—=data;
if (out(il) {
printf ("%$5d",j); out[j] = FALSE;
y = x—link; zx—link = top; top = %; X = ¥y;
}
else x = x—link;
1
if ('top) break;
x = segitop—-sdatal; top = top—link;
/* unstack */

Program 4.22: Program to find equivalence classes

Analysis of the equivalence program: The initialization of seq and our takes O(n) time.
Inputting the equivalence pairs in phase | takes a constant amount of time per pair.
Hence, the total time for this phase is O(m +n) where m is the number of pairs input. In
phase 2, we put each node onto the linked stack at most once. Since there are only 2m
nodes, and we execute the for loop n times, the time for this phase is O(m + n). Thus,
the overall computing time is O(m + n). Any algorithm that processes equivalence rela-
tions must look at all m equivalence pairs and at all » polygons at least once. Thus, there
is no algorithm with a computing time less than O(m+n). This means that the
equivalence algorithm is optimal to within a constant factor. Unfortunately, the space
required by the algoritbm is also O(m +°n). In Chapter 5, we look at an alternative solu-
tion fo this problem that requires only O{(n} space. O

4.7 SPARSE MATRICES

4.7.1 Sparse Matrix Representation

In Chapter 2, we saw that we could save space and computing time by retaining only the
nonzero terms of sparse matrices. When the nonzero terms did not form a "nice” pattern,
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such as a triangle or a band, we devised a sequential scheme in which we represented
each nonzero term by a node with three fields: row, column, and value. We organized
these nodes sequentially, However, we found that when we performed matrix operations
such as addition, subtraction, or multiplication, the number of nonzero terms varied.
Matrices representing partial computations, as in the case of polynomials, were created
and later destroyed to make space for further matrices. Thus, the sequential representa-
tion of sparse matrices suffered from the same inadequacies as the similar representation
of polynomials. In this section, we study a linked list representation for sparse matrices.
As we have seen'previously, linked lists allow us to efficiently represent structures that
vary in size, a benefit that also applies to sparse matrices.

In our data representation, we represent each column of a sparse matrix as a circu-
larly linked list with a header node. We use a similar representation for each row of a
sparse matrix. Each node has a tag field, which we use to distinguish between header
nodes and entry nodes. Each header node has three additional fields: down, right, and
next (Figure 4.17(a)). We use the down field to link into a column list and the right field
to link into a row list. The next field links the header nodes together. The header node
for row i is also the header node for column i, and the total sure’'. 7 header nodes is
max {number of rows, number of columns}.

Each entry node has five fields in addition to the tag fiela: row, cul, down, right,
value (Figure 4.17(b)). We use the down field to link to the next nonzero term in the
same column and the righe field to link to the next nonzero term in the same row. Thus,
tf @;; # 0, there is a node with tag field = entry, value = a;;, row = i, and col = j (Figure
4.17(c)). We link this node into the circular linked lists for row i and column j. Hence,
it is simultaneously linked into two different tists.

row | col |value

{a) header node (b) element node

head field is not shown

Figure 4.17: Node structure for sparse matrices

As noted earlier, each header node is in three lists: a list of rows, a list of columns,
and a list of header nodes. The tist of header nodes also has a header node that has the
same structure as an entry node (Figure 4.17(b)). We use the row and col fields of this
node to store the matrix dimensions.



Consider the sparse matrix, a, shown in Figure 4.18. Figure 4.19 shows the linked
representation of this matrix. Although we have not shown the value of the tag fields, we
can easily determine these values from the node structure. For each nonzero term of a,
we have one entry node that is in exactly one row list and one column list. The header
nodes are marked H 0-H 3. As the figure shows, we use the right field of the header node
list header to link into the list of header nodes. Notice also that we may reference the
entire matrix through the header node, a, of the list of header nodes.

DR O AN
SOoOOoOoo
[« ool o Yo
O OWo

Figure 4.18: 4 x 4 sparse matrix a

If we wish to represent a numRows X numCols matrix with numTerms nonzero
terms, then we need max {numRows, numCols} + numTerms + 1 nodes. While each node
may require several words of memory, the total storage will be less than numRows x
numCols when numTerms is sufficiently small.

Since we have two different types of nodes in our representation, we use a wnion
to create the appropriate data structure. The necessary C declarations are as follows:

#define MAX_SIZE 50 /*size of largest matrix*/
typedef enum {head,entry} tagfield;
typedef struct matrixNode *matrixPointer;
typedef struct |
int row;
int col;
int value;
} entryNode;
typedef struct {
matrixPointer down;
matrixPcinter right;
tagfield tag;
union {
matrixPointer next;
entryNode entry;
bou;
} matrixNode;
matrixPointer hdnode[MAX SIZE];
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Figure 4.19: Linked representation of the sparse matrix of Figure 4.18 (the head ficld of
a node is not shown)

4.7.2  Sparse Matrix Input

The first operation we implement is that of reading in a sparse matrix and obtaining its
linked representation. We assume that the first input line consists of the number of rows
{(numfRows), the number of columns (numCols), and the number of nonzero terms (rum-
Terms). This line is followed by numTerms lines of input, each of which is of the form:
row, col, value. We assume that these lines are ordered by rows and within rows by
columns. For example, Figure 4.20 shows the input for the 4 % 4 matrix of Figure 4.18,



o1 {1 (2]

o] 4 4 4
M| o 2 1
2] 1 0 12
Bi| 2 1 -4
41| 3 3 -5

Figure 4.20: Sample input for sparse matrix

We use an auxiltary array, Adnode, which we assume is at least as large as the
largest-dimensioned matrix to be input. hdnode[i], which is a pointer to the header node
for column i and row i, allows us to access efficiently columns at random, while we are
setting up the input matrix. The function mread (Program 4.23) first sets up the header
nodes and then sets up each row list while simultaneously building the column lists, The
next field of header node, i, is initially used to keep track of the last node in column i.
The last for loop of mread links the header nodes together through this field.

matrixPointer mread(void}
{/* read in a matrix and set up its linked representation.
An auxiliary global array hdnode is used */
int numRows, numCels, numTerms, numHeads, i;
int row, ce¢l, value, currentRow;
matrixPointer temp,last,ncde;

printf ("Enter the number of rows, columns

and number of nonzero terms: "});
scanf ("%d%d%d", snumRows, &numCols, &numlerms);
numleads = (numCocls > numRows) ? numCols : numRows;

/* set up header node for the list of header nodes */
node = newNode(); node—tag = entry;
node—u.entry.row = numRows;

node—u.entry.col = numCols;

if (!numHeads) node—right = node;
else { /* initialize the header nodes */
for (1 = 0; 1 < numHeads; i++) {
temp = newNode;
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hdnode[i]l = temp; hdnodel[i]—tag = head;
hdnode[i]—right = temp; hdnode[i]j—3u.next = temp;
}
currentRow = 0;
last = hdnode[0]; /* last node in current row */
for (i = 0; 1 < numTerms; 1++) |
printf ("Enter row, column and value: ");
scanf ("%d%d%d", &row, &col, &value);
if {row > currentRow) {/* close current row */
last-sright = hdnode[currentRow];
currentRow = row; last = hdnode(row];
} -
MALLOC (temp, sizeof (*temp)});
temp—tag = entry; temp-3u.entry.row = row;
temp—u.entry.col = col; '
temp—u.entry.value = value;
last—right = temp; /* link intoc row list */
last = temp;
/* link into column list */
hdnode [col] —u.next—down = temp;
hdnode{col]—u.next = temp;
}
/*close last row */
last—right = hdnodelcurrentRow];
/* cloge all column lists */
for (i = 0; 1 < numCols; i++)
hdnode[i]—2u.next—down = hdnode[i];
/* 1link all header nodes together */

for (i = 0; i < numHeads-1; i++)
hdnode [i]—u.next = hdnode{i+1];
hdnode [numHeads—-1]—-u.next = node;

node—right = hdnode[0];
}

return node;

Program 4.23: Read in a sparse matrix

Analysis of mread: Since MALLOC works in a constant amount of time, we can set up
all of the header nodes in O(max {numRows,numiCols}) time. We can also set up each
nonzero term in a constant amount of time because we use the variable last to keep track
of the current row, while next keeps track of the current column, Thaus, the for loop that



inputs and links the entry nodes requires only O{numTerms) time. The remainder of the
function takes O(max {numRows,numCols}) time. Therefore, the total time is:

O(max {numRows,numCols| + numTerms)

= O(numRows + numCols + numTerms).
Notice that this is asymptotically better than the input time of O{numRows X numCeols)
for a numRows x numCols matrix using a two-dimensional array. However it is slightly

worse than the sequential method used in Section 2.5. J

4.7.3  Sparse Matrix OQutput

We would now like to print out the contents of a sparse matrix in a form that resembles
that found in Figure 4.20. The function mwrite (Program 4.24) implements this opera-
tion.

vold mwrite (matrixPointer node)
{/* print out the matrix in row major form =/
int i;
matrixPointer temp, head = node—right;
/* matrix dimensions */
printf (" \n numRows = %d, numCols = %d \n",
node—=u.entry.row, node—u.entry.col);
printf (" The matrix by row, cclumn, and value: \n\n");
for (1 = 0; 1 < node-»u.entry.row; i++) |
/* print out the entries in each row */
for (temp = head—right; temp != head;
temp = temp—right)
printf ("$5d%5d%5d \n",temp—u.entry.row,
temp—u.entry.col, temp—u.entry.value);
head = head—u.next; /* next row */

Program 4.24: Write out a sparse matrix

Analysis of mwrite: The function mwrite uses two for loops. The number of iterations
of the outer for loop is numRows. For any row, i, the number of iterations of the inner
for loop is equal to the number of entries for row i. Therefore, the computing tim- of the
mwrite function is O(numRows + numTerms). O
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4.7.4  Erasing a Sparse Matrix

Before closing this section we want to look at an algorithm that returns all nodes of a
sparse matrix to the system memory. We return the nodes one at a time using free,
although we could develop a faster algorithm using an available space list (see Section
4.4). The function merase (Program 4.25) implements the erase operation.

void merase {matrixPointer *node)
{/* erase the matrix, return the nodes to the heap */

matrixPeinter x,y, head = (*node)—right;
int iy .

/* free the entry and header nodes by row */
for (i = 0; i < (*node)—>u.entry.row; i++) {

Yy = head—right;
while (y != head) {
X = y; ¥ = y-right; free(x);

}
® = head; head = head—u.next; free(x);
}
/* free remaining header nodes*/
y = head;
while (y != *node) {
X = ¥; ¥ = y—=u.next; free(x);
}
free(*ncde); *node = NULL;

Program 4.25: Erase a sparse matrix

Analysis of merase: First, merase returns the entry nodes and the row header nodes to
the system memory using a nested loop structure that resembles the structure found in
mwrite, Thus, the computing time for the nested loops is O(numRows + numTerms). The
time to erase the remaining header nodes is O(numRows + numCols). Hence, the com-
puting time for merase is O(numRows + numCols + numTerms). O

EXERCISES

1. Letaand b be two sparse matrices, Write a function, madd, to create the matrix d
=a +b. Your function should leave matrices ¢ and b unchanged, and set up d as a
new matrix. Show that if a and & are numRows x numCols matrices with
numterms, and numferms, nonzero terms, then we can perform this addition in



O(numRows + numCols + numTerms, + numTerms,) time.

2. Leta and & be two sparse matrices. Write a function, mmull, 1o create the matrix d
= a*b. Show that if a is a mumRows, X numCols, matrix with numTerms, nonzero
terms and b is a numCols, X numCols), matrix with numTerms, nonzero terms,
then we can compute d in O(numCols, X numTerms, + numRows, X numlerms;)
time. Can you think of a way to compute d in O{min {rumCols, X numlerms,,
numRows, X numlerms; |} time?

3. (a) Rewrite merase so that it places the erased list into an available space list
rather than returning it to system memory.

(b} Rewrite mread so that it first attempts to obtain a new node from the avail-
able space list rather than the system memory.

4. Write a function, mtranspose, 1o compute the matrix » = a7, the transpose of the
sparse mairix a. What is the computing time of your function?

5. Design a function that copies a sparse matrix. What is the computing time of your
function?

6. § [Programming project] We want to implement a complete linked list system to
perform arithmetic on sparse matrices using our linked list representation. Create
a user-friendly, menu-driven system that performs the following operations. (The
matrix names are used only for illustrative purposes. The functions are specified
as templates to which you must add the appropriate parameters.)

(a) mread. Read in a sparse matrix.

(b)  mwrite. Write out the contents of a sparse matrix.
(c} merase. Erase a sparse matrix.

(d) madd. Create the sparse matrixd=a+ b

(e) mmult. Create the sparse matrix 4 = a*b.

() mtranspose. Create the sparse matrix b=a’.

4.8 DOUBLY LINKED LISTS

So far we have been working chiefly with chains and singly linked circular lists. For
some problems these would be too restrictive. One difficulty with these lists is that if we
are pointing to a specific node, say p, then we can move only in the direction of the links.
The only way to find the node that precedes p is to start at the beginning of the list. The
same problem arises when one wishes to delete an arbitrary node from a singly linked
list. As can be seen from Example 4.4, easy deletion of an arbitrary node requires know-
ing the preceding node. If we have a problem in which it is necessary to move in either
direction or in which we must delete arbitrary nodes, then it is useful to have doubly
linked lists. Each node now has two link fields, one linking in the forward djrection and
the other linking in the backward direction.



Doubly Linked Lists 187

Header Node

leﬁ: data right /

L~/

Figure 4.21: Doubly linked circular list with header node

A node in a doubly linked list has at least three fields, a left link field (//ink), a data
field (data), and a right link field (rlirk). The necessary declarations are:

typedef struct node *nodePointer;
typedef struct {
" nodePointer llink;
- element data;
nodePointer rlink;
} node;

A doubly linked list may or may not be circular. A sample doubly linked circular
list with three nodes is given in Figure 4.21. Besides these three nodes, we have added a
header node. As was true in previous sections, a header node allows us to implement our
operations more easily. The data field of the header node usually contains no informa-
tion. If p¢r points to any node in a doubly linked list, then:

ptr = ptroillink—rlink = ptr—riink—ilink

This formula reflects the essential virtue of this structure, namely, that we can go back
and forth with equal ease. An empty list is not really empty since it always has a header
node whose structure is illustrated in Figure 4.22,

To use doubly linked lists we must be able to insert and delete nodes. Insertion
into a doubly linked list is fairly easy. Assume that we have two nodes, node and
newnode, node may be either a header node or an interior node in a list. The function
dinsert (Program 4.26) performs the insertion operation in constant time.



first

Figure 4.22: Empty doubly linked circular list with header node

void dinsert (nodePointer node,
{/* insert newnode
newnode—11link =
newnode-»rlink =
node—rlink—llink =
node—riink =

}

node;

newnode;

node—rlink;
newnode;

nodePointer newnode)

to the right of node */

Program 4.26: Insertion into a doubly linked circular list

Deletion from a doubly linked list is equally easy. The function ddelete (Program
4.27) deletes the node deleted from the list pointed to by node. To accomplish this dele-
we only need to change the link fields of the nodes that precede
(deleted—llink—rlink) and follow (deleted —riink—llink) the node we want to delete.

tion,

Figure 4.23 shows the deletion in a doubly linked list with a single node.

EXERCISES

1. - Assume that we have a doubly linked list, as represented in Figure 4.21, and that
we want to add a new node between the second and third nodes in the list. Redraw
the figure so that it shows the insertion. Label the fields of the affected nodes so
that you show how each statement in the dinsert function is executed. For exam-

ple, label newnode—llink, newnode—rlink, and node—srlink—liink.

Repeat Exercise |, but delete the second node from the list.

Devise a linked representation for a list in which insertions and deletions can be
made at either end in O(1) time. Such a structure is called a deque. Write func-

tions to insert and delete at either end.
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void ddelete{nodePointer ncde, nodePointer deleted)
{/* delete from the doubly linked list */

if (node == deleted)
printf("Deletion of header node not permitted.\n");
else |
deleted—llink—rlink = deleted—rlink;
deleted—rlink—llink = deleted—1llink;

free(deleted);

i

Program 4.27: Deletion from a doubly linked circular list
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Figure 4.23: Deletion from a doubly linked circular list

4. Consider the operation XOR (exclusive OR, also written as @) defined as follows
(for i, j binary):

0 if i and j are identical

i®j= 1 otherwise

This definition differs from the usual OR of logic, which is defined as

Oifi=j=0

iORj= 1 otherwise

The definition can be extended to the case in which i and j are binary strings (i.c..



take the XOR of corresponding bits of i and j). So, for example, if i = 10110 and j
= {01100, then { XOR j = i ® j = 11010, Note that

a®a®Db)=(aDPa)Pb=>b
and
(a@b)@b=a®bDb)=a

This notation gives us a space-saving device for storing the right and left links of a
doubly linked list. The nodes will now have only two data members: data and
link. If 1 is to the left of node x and r to its right, then x—link = | ® r If x is the
leftmost node of a non-circular list, I = 0, and if x is the rightmost node, r = 0. For
a new doubtly linked list class in which the link field of each node is the exclusive
or of the addresses of the nodes to its left and right, do the following.

(a) Write a function to traverse the doubly linked list from left to right, printing
out the contents of the data field of each node.

(b)  Write a function to traverse the list from right to left, printing out the con-
tents of the data field of each node.



